Journal of Chromatography, 121 (1976) 303-311 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM; 8989

FATTY ACIDS

VIII*. GAS-LIQUID CHROMATOGRAPHIC PROPERTIES OF ALL DIMETH-YLENE INTERRUPTED METHYL trans, trans-OCTADECADIENOATES

C. H. LAM and M. S. F. LIE KEN ЛЕ Chemistry Department, University of Hong Kong (Hong Kong) (Received December 23rd, 1975)

SUMMARY

•

All the dimethylene interrupted *trans,trans*-octadecadienoic acids were synthesised by lithium metal-ammonia reduction of the corresponding octadecadiynoic acids, except for the $\Delta^{2t,6t}$ isomer, which was obtained by the isomerisation of the $\Delta^{2c,6c}$ isomer. The gas-liquid chromatographic behaviour of the methyl esters was studied on polar [Carbowax 20M, FFAP, DEGA, DEGS, Silar 10C (recently renamed as Apolar 10) and SP 2330], semi-polar (XE-60), and non-polar (SE-30, OV-101 and Apiezon L) stationary phases. The equivalent chain length of each isomer is recorded (including the $\Delta^{2t,6c}$ isomer) and the possibility of separation of these isomers is discussed.

INTRODUCTION

Further to our study on the gas-liquid chromatographic (GLC) properties of the dimethylene interrupted C₁₈ esters, we have now prepared all (except the $\Delta^{2t,6t}$ isomer) *trans,trans* isomers by lithium metal-ammonia reduction² of the corresponding diynoic acids. The $\Delta^{2t,6t}$ isomer was obtained from the $\Delta^{2c,6c}$ isomer by isomerisation of the *cis*-ethylenic bond located between C-2 and C-3 by mercuric acetate³ to give initially the $\Delta^{2t,6c}$ intermediate, which was further isomerised in the presence of nitrous acid⁴ to the required $\Delta^{2t,6t}$ isomer. Purification of the *trans,trans* compounds was readily achieved by silver ion thin-layer chromatography (TLC).

Hoffmann and Meijboom⁵ have isolated the $\Delta^{11t,15t}$ isomer from tallow, while Kuemmel and Chapman⁶ obtained on hydrogenation of corn oil small amounts of the $\Delta^{8t,12t}$ and $\Delta^{9t,13t}$ isomers. When rats were fed on trielaidin, the $\Delta^{5t,9t}$ isomer was detected in the tissues of the liver⁷. Of all the twelve possible *trans,trans* isomers only the $\Delta^{6t,10t}$ and $\Delta^{8t,12t}$ isomers were previously synthesised⁸.

* For Part VII, see ref. 1.

EXPERIMENTAL

General method of reduction of all isomers, except $\Delta^{2x,6t}$

Lithium metal (800 mg) was added piecewise into a mixture of octadecadiynoic acid (500 mg) and tetrahydrofuran (20 ml) in distilled liquid ammonia (300 ml) under reflux for 3 h. Ethanol (2 ml) was added to destroy the excess lithium and the ammonia was allowed to evaporate. Extraction with diethyl ether of the acidified reaction mixture gave *trans,trans*-octadecadienoic acid (80–90% yield). GLC analysis of the methyl ester derivative showed the presence of 2–10% methyl C₁₈-enynoate.

In the preparation of the $\Delta^{12r,16r}$ isomer, the product contained 10% enynoate, 57% dienoate and 23% enoate with ECL_{Silar 10C} of 20.30, 19.22, 18.35, respectively. And in the case of the $\Delta^{13r,17c}$ isomer, ammonium sulphate (500 mg) was added to the ammoniacal reaction mixture as a proton source for the reduction of the terminal acetylene. The product contained 68% dienoate and 32% enynoate with ECL_{Silar 19C} of 19.21 and 21.27. In both instances, the *trans* isomers were isolated by silver ion TLC.

Preparation of $\Delta^{2t,6t}$

A mixture of methyl *cis,cis*-2,6-octadecadienoate (100 mg), mercuric acetate (300 mg) and methanol (25 ml) was left at room temperature for four days. The reaction mixture was then refluxed for 1 h, diluted with hydrochloric acid (2 M, 20 ml) and extracted with diethyl ether after 2 h. GLC analysis of the extract showed the presence of methyl *trans*-2,*cis*-6-octadecadienoate (96%, ECL_{sitar 10C} 19.84) and methyl *cis,cis*-2,6-octadecadienoate (4%, ECL_{sitar 10C} 18.49). The *trans*-2,*cis*-6 isomer was isolated by silver ion TLC (90 mg, 90% yield).

The trans-2, cis-6 isomer (90 mg) in diethyl ether (20 ml) was vigorously shaken with a mixture of nitric acid (6 M, 20 ml) and sodium nitrite (2 M, 20 ml) for 3 h. The GLC analysis of the isolated product gave a shoulder peak with ECL_{silar 10C} of 19.72 and 19.84. Methyl trans, trans-2,6-octadecadienoate (30 mg, 33% yield) was

TABLE I

CONDITIONS FOR GLC

Column length, 2 m.

Stationary phase	Temperature (°C)	Carrier gas (nitrogen) flow-rate (ml/min)	Internal diameter (mm)
5% Apiezon L	200	100	3.1
3 % SE-30	190	40	3.1
1.5% OV-101	190	40	3.1
20% XE-60	190	95	6.2
10% Carbowax 20M	200	40	3.1
10% FFAP	195	40	3.1
10% DEGA	195	80	6.2
10% Silar 10C	165	70	6.2
20% DEGS	140	40	3.1
10% SP 2330	170	50	6.2

FATTY ACIDS. VIII.

isolated by silver ion TLC. Infrared analysis (cm^{-1}) : 3000(s) (C-H), 1720(s) (C=O), 1660(m) (C=C) and 970(s) (C-H bending at the *trans* ethylenic bonds). The following nuclear magnetic resonance signals (τ) were observed:

	CH ₃ - 9.1	(CH ₂) ₉ - 8.76	CH ₂ -7.8	$CH \stackrel{t}{=} CH - 4.62$	(CH ₂) ₂ 7.8	CH = 4.09	CH- 3.1	COOCH ₃ 6.3
Number of	(3)	(18)	(2)	(2)	(4)	(1)	(1)	(3)
protons:								

Oxidative cleavage of the methyl *trans,trans*-octadecadienoates gave the corresponding mono- and/or dicarboxylic acid moieties only.

Fig. 1. Equivalent chain lengths of trans, trans-diolefinic C18 methyl esters.

2

TABLE II

EQUIVALENT CHAIN L	ENGTHS OF INDIVIDUAL #	rans, trans-DIOLEFINIC Cus METHYL
FSTERS AND THEIR MI	XTURES ON APIEZON L	

Isomer	ECL	AI*	A2**	A3**	A4***	A5*
A22,65	18.19	18.17				_
A30,70	17.47		-	<u> </u>	·	·
A41.81	17.42		-			_
1 ^{5€,9} €	17.43				17.43	
151.101	17.40	_			<u> </u>	17.43
A71,111	17.41		17.41	<u> </u>		_
18t.12t	17.43			17.46		-
19r.13:	17.49	<u> </u>	_		_	[`]
A10:,141	17.59	-	_			17.43
A111,151	17.61	_	_	_		_
A121,160	17.72	17.72	17.69	17.72		_
A131.17e	17.65				17.59	
A21,60	18.14	_	_			

* Baseline separation.

** Twin peak separation.

*** Shoulder separation.

[§] No separation.

RESULTS

The GLC results were obtained under the conditions given in Table I on a Pye 104 or Varian 940 chromatograph equipped with a flame ionisation detector. Equivalent chain length (ECL) values were calculated from distances between the solvent front and the peak of the eluted components with saturated esters (C_{15} , C_{16} , C_{18} , C_{19} and C_{20}) as internal standards.

TABLE III

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C18 METHYL ESTERS AND THEIR MIXTURES ON SE-30

Isomer	ECL	BI*	B2**	B3**	B4***	B5*
122,6t	18.17	18.15	18.13			
∆ ^{3t,7t}	17.66	17.68		-		
∆ ^{41,81}	17.59					-
A51.91	17.61	` —		_	-	-
A61,101	17.56				17.58	17.57
171,111	17.59	-	-	17.62	-	_
181,121	17.65			~		 "
A91,131	17.68		-			-
⊿10r,14r	17.70	-	—			·
A111.151	17.70	-		_		17.57
A121.160	17.86	-	<u> </u>	17.86		_
⊿ ^{13r,17e}	17.76	-	17.80	~	17.76	
A22,6c	18.13	_	_			-

* Baseline separation.

** Twin peak separation.

*** Shoulder separation.

¹ No separation.

TABLE IV

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C₁₈ METHYL ESTERS AND THEIR MIXTURES ON OV-101

Isomer	ECL	CI*	C2**	C3**	C4***	C5 i
A21,61	18.14	18.14	18.18	_	`	_
A31,71	17.74	17.74	_		_	→
∆41.81	17.55		_			
A 51.91	17.59			-		_
A 60.100	17.59			_	17.60	
171.111	17.60			17.62		
A81.121	17.66		—			
19t.13t	17.68	_			-	17.77
A100,140	17.71			 `		-
A111,151	17.73		-	—		_
∆ ^{12:,16t}	17.84		-	17.84	_	17.77
⊿ ^{13e,17e}	17.79	_	17.79	_	17.75	
A21,60	18.12				_	

* Baseline separation.

** Twin peak separation.

*** Shoulder separation.

⁵ No separation.

The ECL values of all the dimethylene interrupted methyl *trans,trans*-octadecadienoates are compared in Fig. 1 and the actual values are recorded in Tables II-XI.

Methyl trans, trans-octadecadienoates

On all the ten stationary phases studied, the $\Delta^{2r,6r}$ isomer gave the highest

TABLE V

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C₁₈ METHYL ESTERS AND THEIR MIXTURES ON XE-60

Isomer	ECL	DI*	D2**	D3***	D4***	D5 •
A21,61	18.84				_	
A34.71	17.98					
∆41.8r	17.84	17.84			_	
151.91	17.90			17.93	17.94	
A61,101	17.93	_		_	_	18.00
A71,111	17.96		17.96		—	
A81,120	18.02	_		_		
A91.132	18.07		→			18.00
1100,140	18.10		—	—	18.08	_
A111,151	18.16		_	18.12 -	. —	
A121.16€	18.26	18.28			-	-
∆ ^{132,17e}	18.28	-	18.32			_
121,6e	18.99	_			—	_

* Baseline separation.

** Twin peak separation.

*** Shoulder separation.

¹ No separation.

TABLE VI

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C18 METHYL ESTERS AND THEIR MIXTURES ON CARBOWAX 20M

Isomer	ECL	El*	E2**	E3***	E4***	ES!
A21,61	19.28	19.28				
131,71	18.64	-		18.63		
A41.81	18.36	_	_		_	18.40
151,91	18.44			_		-
160.100	18.45		-	_	18.46	-
171,111	18.43		-		_	—
A81.121	18.52		-			18.40
∠191.13t	18.55			_		_
A 101.141	18.56	_	18.56			_
A111,151	18.64				18.64	<u></u>
A121,161	18.88	_	18.89	18.83		_
A131,17e	18.78	18.81				
A21,6c	19.26	_		_	_	_

* Baseline separation.

** Twin peak separation.

*** Shoulder separation.

⁶ No separation.

ECL value of the series. On the three non-polar stationary phases (Apiezon L, SE-30 and OV-101) these isomers gave ECL values below 18.00, except in the case of the $\Delta^{2t,6t}$ isomer. The lowest values were recorded on Apiezon L, ranging from 17.40 to 18.19, while SE-30 and OV-101 gave an almost identical retention pattern, with ECL values ranging from 17.56 to 18.17 and 17.55 to 18.14, respectively.

On the semi-polar XE-60 phase, the ECL values ranged from 17.84 to 18.84,

TABLE VII

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C18 METHYL ESTERS AND THEIR MIXTURES ON FFAP

Isomer	ECL	<i>F1</i> *	F2**	F3**	F4***	F5 \$
A21.61	19.32	_		_		
A31,71	18,63	_	_	18.64	_	_
A41,82	18.42	_	-	18.40	_	_
151.91	18.41	_		_		18.54
16t.10t	18.46	-	_			_
A71.111	18.45	18.45	_	-		_
181.121	18.47			_		
192.132	18.51		18.54		.—	—
A107,147	18.55	-		—	-	18.54
A111.15t	18.68		_		18.76	
A121.151	18.88	18.90	—	_	_	_
\$131,170	18.86		18.85		18.87	~~
12:,6c	19.31	_	_			-

* Base line separation.

"Twin peak separation.

** Shoulder separation.

¹ No separation.

TABLE VIII

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C18 METHYL ESTERS AND THEIR MIXTURES ON DEGA

Isomer	ECL	<i>G1</i> ⁺	G2**	G3***	G4***	G5 I
A21.61	19.63			_		
131.71	18.82	-		18.80	_	18.72
141.8r	18.50				_	_
150,90	18.55		—		18.56	
⊿60.10r	18.59	-		18.60		_
A7e.11€	18.61	_	18.61	_		
∆ ^{81,121}	18.67	. —	_	-		18.72
191.131	18.73				18.59	_
A101,141	18.78	18.76	-		-	
A111,15t	18.86	_	18.86			_
112t.16t	19.16	-	_	_		_
A131,17e	19.13	19.15		_		
120,6e	19.74	-	_	_		_

* Baseline separation.

** Twin peak separation.

** Shoulder separation.

⁸ No separation.

with the $\Delta^{4t,8t}$ isomer exhibiting the lowest value in the series. Unlike the behaviour of the $\Delta^{13c,17e}$ isomer¹, the $\Delta^{13r,17e}$ isomer gave an ECL value which was slightly higher than that observed for the $\Delta^{12t,16t}$ isomer. There was once more a significant and gradual increase in the ECL value as the double bonds moved closer to the ω -end of the molecule.

Of the polar phases, the newly employed SP 2330 phase furnished the highest

TABLE IX

Isomer	ECL	HI*	H2**	H3**	H4***	H5 *
A22,61	19.64					
A31,7€	18.75	18.76			—	18.66
A42,80	18.44			18.44		-
∆ ^{5t.9t}	18.54				18.58	_
A 61.101	18.60		_	_		18.66
A71.110	18.64		_		_	_
⊿182,121	18.71			_	18.68	_
∆ ^{91,131}	18.77			18.77	_	
A105.141	18.80		18.81	_		_
⊿1117,15:	18.92				_	
A121.160	19.22	19.21	_		—	_
A130,170	19.21		19.22			<u> </u>
122.6c	19.84		_		-	-

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C18 METHYL ESTERS AND THEIR MIXTURES ON SILAR 10C

* Baseline separation.

** Twin peak separation.

** Shoulder separation.

No separation.

TABLE X

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC C18 METHYL ESTERS AND THEIR MIXTURES ON DEGS

Isomer	FCI	71*	12**	13**	I4***	751
130/////	200					
A21,61	19.59	19.61	_			
131.71	18.99	18.98				
141.82	18.59		_	18.61	-	—
15t,9t	18.62	-	.	-	18.73	_
16t.101	18.68	_	-	_	-	18.79
A72,111	18.68		_	-		
181,121	18.74	_	18.74	-	_	-
197,13:	18.80	_			_	-
1101,141	18.88			_	18.78	18.79
A111,151	18.99		_	18.98		_
A121.161	19.25		_	_		_
/13r,17e	19.24	_	19.23			-
A21.60	19.69	_			_	

* Baseline separation.

** Twin peak separation.

** Shoulder separation.

* No separation.

ECL values for most isomers. The $\Delta^{4t,8t}$ isomer gave the lowest ECL value in the series on almost every polar stationary phase. Carbowax 20M and FFAP produced quite similar ECL results with values ranging from 18.36 to 19.28 and 18.41 to 19.32, respectively. Silar 10C gave ECL values which were higher than those observed on DEGA, but were lower than those found on the DEGS phase; and the ECL values ranged from 18.44 to 19.64 (Silar 10C), 18.50 to 19.63 (DEGA) and 18.59 to 19.59

TABLE XI

EQUIVALENT CHAIN LENGTHS OF INDIVIDUAL trans, trans-DIOLEFINIC METHYL ESTERS AND THEIR MIXTURES ON SP 2330

Isomer	ECL	<i>J1</i> *	J2**	J3***	J4 ^a	J5 [§]
121.61	19.81	_			_	
132.72	18.92			18.86	_	
A41,82	18.58		18.59	18.58	_	-
A 52.92	18.65			_	_	18.78
16e,10e	18.69	18.69	_			
A71.111	18.78	_			19.00	
181,121	18.87	_	`		-	18.78
191,131	18.93	-		_	-	
21 ^{107,147}	18.97	_	18.91			
111r.15r	19.10	_		_	19.00	
A121.161	19.22	_				
21131.17e	19.27	19.27	-	-		—
21.6c	19.93	_			—	

* Baseline separation.

** Twin peak separation.

** Shoulder separation.

⁴ No separation.

TABLE XII

Stationary phase	Baseline	Degree of separation (difference in ECL)			
		Twin peak	Shoulder	No separation	
APL	0.47 (A1)	≥0.29 (A2-3)	0.22 (A4)	0.19 (A5)	
SE-30	0.51 (B1)	>0.27 (B2-3)	0.20 (B4)	0.14 (B5)	
OV-101	0.40 (C1)	>0.24 (C2-3)	0.20 (C4)	0.16 (C5)	
XE-60	0.42 (D1)	0.32 (D2)	≥0.20 (D3-4)	0.14 (D5)	
Carbowax 20M	0.50 (E1)	0.32 (E2)	≥0.19 (E3-4)	0.16 (E5)	
FFAP	0.43 (F1)	≥0.21 (F2–3)	0.18 (F4)	0.14 (F5)	
DEGA	0.35 (G1)	0.25 (G2)	>0.18 (G3-4)	0.15 (G5)	
Silar 10C	0.47 (H1)	≥0.33 (H2–3)	0.17 (H4)	0.15 (H5)	
DEGS	0.60 (T1)	≥0.40 (I2–3)	0.26 (14)	0.20 (15)	
SP 2330	0.58 (J1)	0.39 (J2)	0.34 (J3)	≤0.32 (J4-5)	

......

(DEGS). The SP 2330 stationary phase was claimed as a semi-polar phase⁹, but for these trans, trans isomers this phase gave the highest recorded ECL values for nine isomers in the series. The ECL values ranged from 18.58 to 19.81.

No sign of decomposition of the $\Delta^{2t,6t}$ and $\Delta^{3t,7t}$ isomers on the polar stationary phases was observed, as previously reported¹⁰ in the case of the corresponding diacetylenic esters.

Mixtures of these isomers were also examined (Tables II-XI) and the results are summarised in Table XII. The degree of separation is described as baseline, twin peak and shoulder. On the non-polar stationary phases the efficiency of separation of the isomers was best on OV-101, while SE-30 and APL gave almost identical performances. Amongst the polar phases, FFAP, DEGA and Silar 10C were superior in separating these isomers. The ECL values are highly reproducible on all stationary phases (including the newly studied SP 2330 phase), as demonstrated by the examination of the mixtures of these isomers.

ACKNOWLEDGEMENT

The authors thank the Committee on Higher Degrees and Research Grants of the Hong Kong University for financial support.

REFERENCES

- 1 C. H. Lam and M. S. F. Lie Ken Jie, J. Chromatogr., 117 (1976) 365.
- 2 A. J. Birch and G. S. Rao, Advan. Org. Chem., 8 (1972) 1.
- 3 F. D. Gunstone and R. P. Inglis, Chem. Phys. Lipids, 10 (1973) 73.
- 4 C. Litchfield, J. E. Lord, A. F. Isbell and R. Reiser, J. Amer. Oil Chem. Soc., 40 (1963) 553.
- 5 G. Hoffmann and P. W. Meijboom, J. Amer. Oil Chen. Soc., 46 (1969) 620.
- 6 D. F. Kuemmel and L. R. Chapman, Anal. Chem., 38 (1966) 1611.
- 7 N. Munsch, C.R. Acad. Sci., Ser. D, 263 (1966) 449; C.A., 65 (1966) 17444h.
- 8 F. D. Gunstone and M. S. F. Lie Ken Jie, Chem. Phys. Lipids, 4 (1970) 1.
- 9 Chromatography Supplies Catalog, Supelco Inc., Bellefonte, Pa., 9 (1975) 6.
- 10 C. H. Lam and M. S. F. Lie Ken Jie, J. Chromatogr., 115 (1975) 559.